首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   50篇
  2023年   3篇
  2021年   1篇
  2020年   4篇
  2019年   5篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   9篇
  2010年   11篇
  2009年   8篇
  2008年   14篇
  2007年   4篇
  2006年   6篇
  2005年   11篇
  2004年   11篇
  2003年   4篇
  2002年   13篇
  2001年   14篇
  2000年   10篇
  1999年   12篇
  1998年   9篇
  1997年   2篇
  1996年   8篇
  1995年   9篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   6篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1976年   1篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有279条查询结果,搜索用时 609 毫秒
81.
Ontogeny of cloned cattle to lactation   总被引:1,自引:0,他引:1  
Central to the success of large animal cloning is the production of healthy animals that can provide products for human health, food, and other animal agriculture applications. We report development of cloned cattle derived from 34 genetically unique, nonembryonic cell lines using nuclear transfer performed between 1 January 1998 and 29 February 2000. Nearly 25% (535/2170) of the recipients receiving reconstructed embryos initiated pregnancy. Overall, 19.8% (106/535) of the initiated pregnancies resulted in live births, while 77% (82/106) of these cattle clones remain healthy and productive today. Although a wide variation in birth weight of clone calves was observed, their growth rates, reproductive performance, and lactation characteristics are similar to that found in noncloned dairy cattle. Our data represent the most comprehensive information on cattle derived from nuclear transfer procedures and indicate that this emerging reproductive technology offers unique opportunities to meet critical needs in both human health care and agriculture.  相似文献   
82.
83.
The expression of a sucrose-phosphate synthase (SPS) gene from maize (Zea mays, a monocotyledon) in tomato (Lycopersicon esculentum, a dicotyledon) resulted in marked increases in extractable SPS activity in the light and the dark. Diurnal modulation of the native tomato SPS activity was found. However, when the maize enzyme was present the tomato leaf cells were unable to regulate its activation state. No detrimental effects were observed and total dry matter production was unchanged. However, carbon allocation within the plants was modified such that in shoots it increased, whereas in roots it decreased. There was, therefore, a change in the shoot:root dry weight ratio favoring the shoot. This was positively correlated with increased SPS activity in leaves. SPS was a major determinant of the amount of starch in leaves as well as sucrose. There was a strong positive correlation between the ratio of sucrose to starch and SPS activity in leaves. Therefore, SPS activity is a major determinant of the partitioning of photosynthetically fixed carbon in the leaf and in the whole plant. The photosynthetic rate in air was not significantly increased as a result of elevated leaf SPS activity. However, the light- and CO2-saturated rate of photosynthesis was increased by about 20% in leaves expressing high SPS. In addition, the temporary enhancement of the photosynthetic rate following brief exposures to low light was increased in the high SPS plants relative to controls. We conclude that the level of SPS in the leaves plays a pivotal role in carbon partitioning. Furthermore, high SPS levels have the potential to boost photosynthetic rates under favorable conditions.  相似文献   
84.
85.
86.
Surfactant protein D (SP-D), one of the members of the collectin family of C-type lectins, is an important component of pulmonary innate immunity. SP-D binds carbohydrates in a calcium-dependent manner, but the mechanisms governing its ligand recognition specificity are not well understood. SP-D binds glucose (Glc) stronger than N-acetylglucosamine (GlcNAc). Structural superimposition of hSP-D with mannose- binding protein C (MBP-C) complexed with GlcNAc reveals steric clashes between the ligand and the side chain of Arg343 in hSP-D. To test whether Arg343 contributes to Glc > GlcNAc recognition specificity, we constructed a computational model of Arg343-->Val (R343V) mutant hSP-D based on homology with MBP-C. Automated docking of alpha-Me-Glc and alpha-Me-GlcNAc into wild-type hSP-D and the R343V mutant of hSP-D suggests that Arg343 is critical in determining ligand-binding specificity by sterically prohibiting one binding orientation. To empirically test the docking predictions, an R343V mutant recombinant hSP-D was constructed. Inhibition analysis shows that the R343V mutant binds both Glc and GlcNAc with higher affinity than the wild-type protein and that the R343V mutant binds Glc and GlcNAc equally well. These data demonstrate that Arg343 is critical for hSP-D recognition specificity and plays a key role in defining ligand specificity differences between MBP and SP-D. Additionally, our results suggest that the number of binding orientations contributes to monosaccharide binding affinity.  相似文献   
87.
The acyl-acyl carrier protein thioesterase B1 from Arabidopsis (AtFATB1) was previously shown to exhibit in vitro hydrolytic activity for long chain acyl-acyl carrier proteins (P. D?rmann, T.A. Voelker, J.B. Ohlrogge [1995] Arch Biochem Biophys 316: 612-618). In this study, we address the question of which role in fatty acid biosynthesis this enzyme plays within the plant. Over-expression of the AtFATB1 cDNA under a seed-specific promoter resulted in accumulation of high amounts of palmitate (16:0) in seeds. RNA and protein-blot analysis in Arabidopsis and rapeseed (Brassica napus) showed that the endogenous AtFATB1 expression was highest in flowers and lower in leaves. All floral tissues of wild-type plants contained elevated amounts of 16:0, and in the polar lipid fraction of flowers close to 50 mol % of the fatty acids were 16:0. Therefore, flowers contain polar lipids with an unusually high amount of saturated fatty acids as compared to all other plant tissues. Antisense expression of the AtFATB1 cDNA under the cauliflower mosaic virus 35S promoter resulted in a reduction of seed and flower 16:0 content, but no changes in leaf fatty acids. We conclude that the AtFATB1 thioesterase contributes to 16:0 production particularly in flowers, but that additional factors are involved in leaves.  相似文献   
88.
Few genetic systems for studying mycoplasmas exist, but transposon Tn916 has been shown to transpose into the genomes of some species and can be used as an insertional mutagen. In the current study, the ability of Enterococcus faecalis to serve as a donor for the conjugative transfer of transposon Tn916 into the genome of the avian pathogen Mycoplasma gallisepticum strain PG31 was examined. Transconjugants were obtained at a frequency of > or =6 x 10(-8) per recipient CFU. To determine the transposon insertion site, an oligonucleotide primer corresponding to the 3' end of Tn916 was designed for the purpose of directly sequencing genomic DNA without PCR amplification. Using the direct sequencing approach, Tn916 was shown to insert into any of numerous sites in the M. gallisepticum genome. This is the first report of conjugal transposition of Tn916 into the M. gallisepticum genome. The ability to determine transposon insertion sites in mycoplasmas by genomic sequencing has not been previously described and allows rapid sequence analysis of transposon-generated mutants.  相似文献   
89.
Production of cloned pigs from in vitro systems   总被引:42,自引:0,他引:42  
Here we describe a procedure for cloning pigs by the use of in vitro culture systems. Four healthy male piglets from two litters were born following nuclear transfer of cultured somatic cells and subsequent embryo transfer. The initiation of five additional pregnancies demonstrates the reproducibility of this procedure. Its important features include extended in vitro culture of fetal cells preceding nuclear transfer, as well as in vitro maturation and activation of oocytes and in vitro embryo culture. The cell culture and nuclear transfer techniques described here should allow the use of genetic modification procedures to produce tissues and organs from cloned pigs with reduced immunogenicity for use in xenotransplantation.  相似文献   
90.
Phospholipid transport between membranes is a fundamental aspect of organelle biogenesis in eukaryotes; however, little is know about this process. A significant body of data demonstrates that newly synthesized phospholipids can move between membranes by routes that are independent of the vesicular traffic that carries membrane proteins. Evidence continues to accumulate in support of a system for phospholipid transport that occurs at zones of apposition and contact between donor membranes - the source of specific phospholipids - and acceptor membranes that are unable to synthesize the necessary lipids. Recent findings identify some of the lipids and proteins that must be present on membranes for inter-organelle phospholipid transport to occur between the endoplasmic reticulum and mitochondria or Golgi. These data suggest that protein and lipid assemblies on donors and acceptors promote membrane docking and facilitate lipid movement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号